Redox-Neutral α-Oxygenation of Amines: Reaction Development and Elucidation of the Mechanism

نویسندگان

  • Matthew T. Richers
  • Martin Breugst
  • Alena Yu. Platonova
  • Anja Ullrich
  • Arne Dieckmann
  • K. N. Houk
  • Daniel Seidel
چکیده

Cyclic secondary amines and 2-hydroxybenzaldehydes or related ketones react to furnish benzo[e][1,3]oxazine structures in generally good yields. This overall redox-neutral amine α-C-H functionalization features a combined reductive N-alkylation/oxidative α-functionalization and is catalyzed by acetic acid. In contrast to previous reports, no external oxidants or metal catalysts are required. Reactions performed under modified conditions lead to an apparent reductive amination and the formation of o-hydroxybenzylamines in a process that involves the oxidation of a second equivalent of amine. A detailed computational study employing density functional theory compares different mechanistic pathways and is used to explain the observed experimental findings. Furthermore, these results also reveal the origin of the catalytic efficiency of acetic acid in these transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasound-promoted Catalyst-free Synthesis of α-Aminonitriles in 1-Butyl-3-methylimidazolium Bromide ([Bmim]Br) as a Reusable Neutral Ionic Liquid

A catalyst-free one-pot three component methodology for the synthesis of α-aminonitriles under ultrasonic irradiation at room temperature using [Bmim]Br as a neutral reaction medium is described. A broad range of substrates including the aromatic, heteroaromatic and aliphatic aldehydes were condensed with amines (aliphatic and aromatic) and trimethylsilyl cyanide (TMSCN). Using this method, all...

متن کامل

Redox-Neutral α-Sulfenylation of Secondary Amines: Ring-Fused N,S-Acetals

Secondary amines react with thiosalicylaldehydes in the presence of catalytic amounts of acetic acid to generate ring-fused N,S-acetals in redox-neutral fashion. A broad range of amines undergo α-sulfenylation, including challenging substrates such morpholine, thiomorpholine, and piperazines. Computational studies employing density functional theory indicate that acetic acid reduces the energy ...

متن کامل

The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations

Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many s...

متن کامل

The formate and redox mechanisms of water-gas shift reaction on the surface of Ag: A nanocluster model based on DFT study

Two different possible mechanisms of water gas shift reaction including formate and redox mechanisms on the Ag5 cluster were investigated using DFT computations. All the elementary steps involved in both mechanisms were considered. It was observed that dissociation of H2Oads and OHads, as well as formation of CO2(ads), required activation e...

متن کامل

Preparation of sterically congested 1,3,4-oxadiazole derivatives from N-isocyaniminotriphenylphosphorane, aromatic acids, cyclopentanone and primary amines

Reactions of N-isocyaniminotriphenylphosphorane with cyclopentanone have been studied in the presence of aromatic carboxylic acids and primary amines, proceeds smoothly at room temperature under neutral conditions to afford sterically congested 1,3,4-oxadiazole derivatives by an intramolecular Aza-Wittig cyclization in CH2Cl2 in excellent yields. The structures of the products were deduced from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014